Partial order resolution of event logs for process conformance checking
Aa, Han van der
;
Leopold, Henrik
;
Weidlich, Matthias
DOI:
|
https://doi.org/10.1016/j.dss.2020.113347
|
URL:
|
https://www.sciencedirect.com/science/article/abs/...
|
Weitere URL:
|
https://arxiv.org/pdf/2007.02416.pdf
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr:
|
2020
|
Titel einer Zeitschrift oder einer Reihe:
|
Decision Support Systems : DSS
|
Band/Volume:
|
136
|
Heft/Issue:
|
Article 113347
|
Seitenbereich:
|
1-34
|
Ort der Veröffentlichung:
|
Amsterdam [u.a.]
|
Verlag:
|
Elsevier
|
ISSN:
|
0167-9236 , 1873-5797
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Artificial Intelligence Methods (Juniorprofessur) (van der Aa 2020-)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
While supporting the execution of business processes, information systems record event logs. Conformance checking relies on these logs to analyze whether the recorded behavior of a process conforms to the behavior of a normative specification. A key assumption of existing conformance checking techniques, however, is that all events are associated with timestamps that allow to infer a total order of events per process instance. Unfortunately, this assumption is often violated in practice. Due to synchronization issues, manual event recordings, or data corruption, events are only partially ordered. In this paper, we put forward the problem of partial order resolution of event logs to close this gap. It refers to the construction of a probability distribution over all possible total orders of events of an instance. To cope with the order uncertainty in real-world data, we present several estimators for this task, incorporating different notions of behavioral abstraction. Moreover, to reduce the runtime of conformance checking based on partial order resolution, we introduce an approximation method that comes with a bounded error in terms of accuracy. Our experiments with real-world and synthetic data reveal that our approach improves accuracy over the state-of-the-art considerably.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Aa, Han van der
;
Leopold, Henrik
;
Weidlich, Matthias
Google Scholar:
Aa, Han van der
;
Leopold, Henrik
;
Weidlich, Matthias
ORCID:
Aa, Han van der ORCID: https://orcid.org/0000-0002-4200-4937, Leopold, Henrik and Weidlich, Matthias
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|