Detecting flight trajectory anomalies and predicting diversions in freight transportation


Di Ciccio, Claudio ; Aa, Han van der ; Cabanillas, Cristina ; Mendling, Jan ; Prescher, Johannes



DOI: https://doi.org/10.1016/j.dss.2016.05.004
URL: https://www.sciencedirect.com/science/article/pii/...
Weitere URL: https://www.researchgate.net/publication/323218924...
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2016
Titel einer Zeitschrift oder einer Reihe: Decision Support Systems : DSS
Band/Volume: 88
Seitenbereich: 1-17
Ort der Veröffentlichung: Amsterdam [u.a.]
Verlag: Elsevier
ISSN: 0167-9236 , 1873-5797
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Artificial Intelligence Methods (Juniorprofessur) (van der Aa 2020-)
Fachgebiet: 004 Informatik
Abstract: Timely identifying flight diversions is a crucial aspect of efficient multi-modal transportation. When an airplane diverts, logistics providers must promptly adapt their transportation plans in order to ensure proper delivery despite such an unexpected event. In practice, the different parties in a logistics chain do not exchange real-time information related to flights. This calls for a means to detect diversions that just requires publicly available data, thus being independent of the communication between different parties. The dependence on public data results in a challenge to detect anomalous behavior without knowing the planned flight trajectory. Our work addresses this challenge by introducing a prediction model that just requires information on an airplane's position, velocity, and intended destination. This information is used to distinguish between regular and anomalous behavior. When an airplane displays anomalous behavior for an extended period of time, the model predicts a diversion. A quantitative evaluation shows that this approach is able to detect diverting airplanes with excellent precision and recall even without knowing planned trajectories as required by related research. By utilizing the proposed prediction model, logistics companies gain a significant amount of response time for these cases.




Dieser Datensatz wurde nicht während einer Tätigkeit an der Universität Mannheim veröffentlicht, dies ist eine Externe Publikation.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen