Interval-based queries over lossy IoT event streams


Busany, Nimrod ; Aa, Han van der ; Senderovich, Arik ; Gal, Avigdor ; Weidlich, Matthias



DOI: https://doi.org/10.1145/3385191
URL: https://dl.acm.org/doi/10.1145/3385191
Weitere URL: https://hanvanderaa.com/wp-content/uploads/2020/03...
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2020
Titel einer Zeitschrift oder einer Reihe: ACM/IMS Transactions on Data Science : TDS
Band/Volume: 1
Heft/Issue: 4
Seitenbereich: Article 27, 1-27
Ort der Veröffentlichung: New York, NY
Verlag: Association for Computing Machinery
ISSN: 2577-3224 , 2691-1922
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Artificial Intelligence Methods (Juniorprofessur) (van der Aa 2020-)
Fachgebiet: 004 Informatik
Abstract: Recognising patterns that correlate multiple events over time becomes increasingly important in applications that exploit the Internet of Things, reaching from urban transportation, through surveillance monitoring to business workflows. In many real-world scenarios, however, timestamps of events may be erroneously recorded and events may be dropped from a stream due to network failures or load shedding policies. In this work, we present SimpMatch, a novel simplex-based algorithm for probabilistic evaluation of event queries using constraints over event orderings in a stream. Our approach avoids learning probability distributions for time-points or occurrence intervals. Instead, we employ the abstraction of segmented intervals and compute the probability of a sequence of such segments using the notion of order statistics. The algorithm runs in linear time to the number of lost events, and shows high accuracy, yielding exact results if event generation is based on a Poisson process and providing a good approximation otherwise. We demonstrate empirically that SimpMatch enables efficient and effective reasoning over event streams, outperforming state-of-the-art methods for probabilistic evaluation of event queries by up to two orders of magnitude.
Zusätzliche Informationen: Online-Ressource




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen