Rendezvous delivery: Utilizing autonomous electric vehicles to improve the efficiency of last mile parcel delivery in urban areas


Nolte, Frederik ; Wilken, Nils ; Bartelt, Christian



DOI: https://doi.org/10.1109/PerComWorkshops51409.2021.9430987
URL: https://ieeexplore.ieee.org/abstract/document/9430...
Document Type: Conference or workshop publication
Year of publication: 2021
Book title: 2021 IEEE PerCom Workshops : PerAwareCity 2021, 6th IEEE Workshop on Pervasive Context-Aware Smart Cities and Intelligent Transportation Systems, March 22-26, 2021 in Kassel, Germany
Page range: 148-153
Conference title: PerAwareCity 2021
Location of the conference venue: Online
Date of the conference: 22.-26.03.2021
Place of publication: Piscataway, NJ
Publishing house: IEEE Computer Society
ISBN: 978-1-6654-4724-9 , 978-1-6654-0424-2
Publication language: English
Institution: School of Business Informatics and Mathematics > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Außerfakultäre Einrichtungen > Institut für Enterprise Systems (InES)
Subject: 004 Computer science, internet
Abstract: Recent advances in technology have led to an increasing degree of automation and optimization in most areas of the parcel logistics process. However, this trend has not been widely adopted in one critical part of the process, which is the actual delivery (also often referred to as ``last mile''). One critical task in the last mile delivery process is the computation of a set of optimal delivery tours for a set of given delivery locations. This task is commonly known as the vehicle routing problem. In this work we propose an extended version of the vehicle routing problem that aims to increase the degree of automation in the last mile delivery process by leveraging on the current advancements in the area of autonomous driving. Further, we study the application of state-of-the-art machine learning methods to solve the proposed problem. We show that such a set up can reduce the overall time needed for delivering parcels compared to the conventional method, in which the delivery agent manually drives the delivery vehicle to each delivery address. In addition, the proposed model is computationally cheap which is essential to support close to real time analysis of context changes (e.g., traffic situation) and decision making, which is critical for an application in the context of highly dynamic Smart City environments.


Economic SustainabilitySDG 7: Affordable and Clean EnergySDG 11: Sustainable Cities and Communities


Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadata export


Citation


+ Search Authors in

+ Page Views

Hits per month over past year

Detailed information



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item