Memory effects as a source of bias in repeated survey measurement
Rettig, Tobias
;
Blom, Annelies G.
Dokumenttyp:
|
Buchkapitel
|
Erscheinungsjahr:
|
2021
|
Buchtitel:
|
Measurement error in longitudinal data
|
Seitenbereich:
|
3-18
|
Herausgeber:
|
Cernat, Alexandru
;
Sakshaug, Joseph W.
|
Ort der Veröffentlichung:
|
Oxford ; New York, NY
|
Verlag:
|
Oxford University Press
|
ISBN:
|
978-0-19-885998-7 , 978-0-19-189244-8
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Außerfakultäre Einrichtungen > SFB 884 Fakultät für Sozialwissenschaften > Data Science (Blom 2017-2022) Außerfakultäre Einrichtungen > MZES - Arbeitsbereich B
|
Fachgebiet:
|
300 Sozialwissenschaften, Soziologie, Anthropologie
|
Abstract:
|
Longitudinal data is essential for understanding how the world around us changes. Most theories in the social sciences and elsewhere have a focus on change, be it of individuals, of countries, of organizations, or of systems, and this is reflected in the myriad of longitudinal data that are being collected using large panel surveys. This type of data collection has been made easier in the age of Big Data and with the rise of social media. Yet our measurements of the world are often imperfect, and longitudinal data is vulnerable to measurement errors which can lead to flawed and misleading conclusions.
Measurement Error in Longitudinal Data tackles the important issue of how to investigate change in the context of imperfect data. It compiles the latest advances in estimating change in the presence of measurement error from several fields and covers the entire process, from the best ways of collecting longitudinal data, to statistical models to estimate change under uncertainty, to examples of researchers applying these methods in the real world.
This book introduces the essential issues of longitudinal data collection, such as memory effects, panel conditioning (or mere measurement effects), the use of administrative data, and the collection of multi-mode longitudinal data. It also presents some of the most important models used in this area, including quasi-simplex models, latent growth models, latent Markov chains, and equivalence/DIF testing. Finally, the use of vignettes in the context of longitudinal data and estimation methods for multilevel models of change in the presence of measurement error are also discussed.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|