Come hither or go away? Recognising pre-electoral coalition signals in the news
Rehbein, Ines
;
Ponzetto, Simone Paolo
;
Adendorf, Anna
;
Bahnsen, Oke
;
Stoetzer, Lukas F.
;
Stuckenschmidt, Heiner

URL:
|
https://aclanthology.org/2021.emnlp-main.615
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2021
|
Buchtitel:
|
Proceedings of the 2021 conference on empirical methods in natural language processing (EMNLP 2021)
|
Seitenbereich:
|
7798-7810
|
Veranstaltungstitel:
|
EMNLP 2021
|
Veranstaltungsort:
|
Punta Cana, Dominican Republic, online
|
Veranstaltungsdatum:
|
7.-11.11.2021
|
Herausgeber:
|
Moens, Marie-Francine
;
Huang, Xuanjing
;
Specia, Lucia
;
Yih, Scott Wen-tau
|
Ort der Veröffentlichung:
|
Punta Cana, Dominican Republic
|
Verlag:
|
Association for Computational Linguistics
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Außerfakultäre Einrichtungen > SFB 884 Außerfakultäre Einrichtungen > GESS - CDSS (SOWI)
|
Fachgebiet:
|
004 Informatik
|
Freie Schlagwörter (Englisch):
|
political text analysis
|
Abstract:
|
In this paper, we introduce the task of political coalition signal prediction from text, that is, the task of recognizing from the news coverage leading up to an election the(un)willingness of political parties to form a government coalition. We decompose our problem into two related, but distinct tasks: (i) predicting whether a reported statement from a politician or a journalist refers to a potential coalition and (ii) predicting the polarity of the signal — namely, whether the speaker is in favour of or against the coalition. For this, we explore the benefits of multi-task learning and investigate which setup and task formulation is best suited for each subtask. We evaluate our approach, based on hand-coded newspaper articles, covering elections in three countries (Ireland, Germany, Austria) and two languages (English, German). Our results show that the multi-task learning approach can further improve results over a strong monolingual transfer learning baseline.
|
 | Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Rehbein, Ines
;
Ponzetto, Simone Paolo
;
Adendorf, Anna
;
Bahnsen, Oke
;
Stoetzer, Lukas F.
;
Stuckenschmidt, Heiner
Google Scholar:
Rehbein, Ines
;
Ponzetto, Simone Paolo
;
Adendorf, Anna
;
Bahnsen, Oke
;
Stoetzer, Lukas F.
;
Stuckenschmidt, Heiner
ORCID:
Rehbein, Ines, Ponzetto, Simone Paolo ORCID: https://orcid.org/0000-0001-7484-2049, Adendorf, Anna, Bahnsen, Oke ORCID: https://orcid.org/0000-0003-3198-2804, Stoetzer, Lukas F. and Stuckenschmidt, Heiner ORCID: https://orcid.org/0000-0002-0209-3859
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
 |
Eintrag anzeigen |
|