Activity Recognition in Assembly Tasks by Bayesian Filtering in Multi-Hypergraphs


Felske, Timon ; Lüdtke, Stefan ; Bader, Sebastian ; Kirste, Thomas



Dokumenttyp: Präsentation auf Konferenz
Erscheinungsjahr: 2022
Veranstaltungstitel: 2nd Workshop on Graphs and more Complex Structures for Learning and Reasoning ; colocated with AAAI 2022
Veranstaltungsort: online
Veranstaltungsdatum: 28.02.2022
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Außerfakultäre Einrichtungen > Institut für Enterprise Systems (InES)
Fachgebiet: 004 Informatik
Abstract: We study sensor-based human activity recognition in manual work processes like assembly tasks. In such processes, the system states often have a rich structure, involving object properties and relations. Thus, estimating the hidden system state from sensor observations by recursive Bayesian filtering can be very challenging, due to the combinatorial explosion in the number of system states. To alleviate this problem, we propose an efficient Bayesian filtering model for such processes. In our approach, system states are represented by multi-hypergraphs, and the system dynamics is modeled by graph rewriting rules. We show a preliminary concept that allows to represent distributions over multi-hypergraphs more compactly than by full enumeration, and present an inference algorithm that works directly on this compact representation. We demonstrate the applicability of the algorithm on a real dataset.







Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen