NASTyLinker: NIL-aware scalable transformer-based entity linker


Heist, Nicolas ; Paulheim, Heiko



DOI: https://doi.org/10.1007/978-3-031-33455-9_11
URL: https://link.springer.com/chapter/10.1007/978-3-03...
Weitere URL: https://dl.acm.org/doi/abs/10.1007/978-3-031-33455...
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2023
Buchtitel: The Semantic Web : 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28-June 1, 2023, Proceedings
Titel einer Zeitschrift oder einer Reihe: Lecture Notes in Computer Science
Band/Volume: 13870
Seitenbereich: 174-191
Veranstaltungstitel: ESWC 2023, 20th International Conference
Veranstaltungsort: Hersonissos, Crete, Greece
Veranstaltungsdatum: 28.05.2023-01.06.2023
Herausgeber: Dimou, Anastasia ; Dragoni, Mauro ; Faria, Daniel ; Hertling, Sven ; Jiménez-Ruiz, Ernesto ; McCusker, Jamie ; Pesquita, Catia ; Troncy, Raphaël
Ort der Veröffentlichung: Berlin [u.a.]
Verlag: Springer
ISBN: 978-3-031-33454-2 , 978-3-031-33455-9
ISSN: 0302-9743 , 1611-3349
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Data Science (Paulheim 2018-)
Fachgebiet: 004 Informatik
Abstract: Entity Linking (EL) is the task of detecting mentions of entities in text and disambiguating them to a reference knowledge base. Most prevalent EL approaches assume that the reference knowledge base is complete. In practice, however, it is necessary to deal with the case of linking to an entity that is not contained in the knowledge base (NIL entity). Recent works have shown that, instead of focusing only on affinities between mentions and entities, considering inter-mention affinities can be used to represent NIL entities by producing clusters of mentions. At the same time, inter-mention affinities can help to substantially improve linking performance for known entities. With NASTyLinker, we introduce an EL approach that is aware of NIL entities and produces corresponding mention clusters while maintaining high linking performance for known entities. The approach clusters mentions and entities based on dense representations from Transformers and resolves conflicts (if more than one entity is assigned to a cluster) by computing transitive mention-entity affinities. We show the effectiveness and scalability of NASTyLinker on NILK, a dataset that is explicitly constructed to evaluate EL with respect to NIL entities. Further, we apply the presented approach to an actual EL task, namely to knowledge graph population by linking entities in Wikipedia listings, and provide an analysis of the outcome.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

BASE: Heist, Nicolas ; Paulheim, Heiko

Google Scholar: Heist, Nicolas ; Paulheim, Heiko

ORCID: Heist, Nicolas ORCID: 0000-0002-4354-9138 ; Paulheim, Heiko ORCID: 0000-0003-4386-8195 ["search_editors_ORCID" not defined] Dimou, Anastasia ; Dragoni, Mauro ; Faria, Daniel ; Hertling, Sven ORCID: 0000-0003-0333-5888 ; Jiménez-Ruiz, Ernesto ; McCusker, Jamie ; Pesquita, Catia ; Troncy, Raphaël

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen