NASTyLinker: NIL-aware scalable transformer-based entity linker
Heist, Nicolas
;
Paulheim, Heiko
DOI:
|
https://doi.org/10.1007/978-3-031-33455-9_11
|
URL:
|
https://link.springer.com/chapter/10.1007/978-3-03...
|
Weitere URL:
|
https://dl.acm.org/doi/abs/10.1007/978-3-031-33455...
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2023
|
Buchtitel:
|
The Semantic Web : 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28-June 1, 2023, Proceedings
|
Titel einer Zeitschrift oder einer Reihe:
|
Lecture Notes in Computer Science
|
Band/Volume:
|
13870
|
Seitenbereich:
|
174-191
|
Veranstaltungstitel:
|
ESWC 2023, 20th International Conference
|
Veranstaltungsort:
|
Hersonissos, Crete, Greece
|
Veranstaltungsdatum:
|
28.05.2023-01.06.2023
|
Herausgeber:
|
Dimou, Anastasia
;
Dragoni, Mauro
;
Faria, Daniel
;
Hertling, Sven
;
Jiménez-Ruiz, Ernesto
;
McCusker, Jamie
;
Pesquita, Catia
;
Troncy, Raphaël
|
Ort der Veröffentlichung:
|
Berlin [u.a.]
|
Verlag:
|
Springer
|
ISBN:
|
978-3-031-33454-2 , 978-3-031-33455-9
|
ISSN:
|
0302-9743 , 1611-3349
|
Verwandte URLs:
|
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Data Science (Paulheim 2018-)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Entity Linking (EL) is the task of detecting mentions of entities in text and disambiguating them to a reference knowledge base. Most prevalent EL approaches assume that the reference knowledge base is complete. In practice, however, it is necessary to deal with the case of linking to an entity that is not contained in the knowledge base (NIL entity). Recent works have shown that, instead of focusing only on affinities between mentions and entities, considering inter-mention affinities can be used to represent NIL entities by producing clusters of mentions. At the same time, inter-mention affinities can help to substantially improve linking performance for known entities. With NASTyLinker, we introduce an EL approach that is aware of NIL entities and produces corresponding mention clusters while maintaining high linking performance for known entities. The approach clusters mentions and entities based on dense representations from Transformers and resolves conflicts (if more than one entity is assigned to a cluster) by computing transitive mention-entity affinities. We show the effectiveness and scalability of NASTyLinker on NILK, a dataset that is explicitly constructed to evaluate EL with respect to NIL entities. Further, we apply the presented approach to an actual EL task, namely to knowledge graph population by linking entities in Wikipedia listings, and provide an analysis of the outcome.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Heist, Nicolas
;
Paulheim, Heiko
Google Scholar:
Heist, Nicolas
;
Paulheim, Heiko
ORCID:
Heist, Nicolas ORCID: 0000-0002-4354-9138 ; Paulheim, Heiko ORCID: 0000-0003-4386-8195
["search_editors_ORCID" not defined]
Dimou, Anastasia ; Dragoni, Mauro ; Faria, Daniel ; Hertling, Sven ORCID: 0000-0003-0333-5888 ; Jiménez-Ruiz, Ernesto ; McCusker, Jamie ; Pesquita, Catia ; Troncy, Raphaël
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|