Efficient learning of discrete-continuous computation graphs
Friede, David
;
Niepert, Mathias
URL:
|
https://proceedings.neurips.cc/paper_files/paper/2...
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2022
|
Buchtitel:
|
35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021
|
Titel einer Zeitschrift oder einer Reihe:
|
Advances in Neural Information Processing Systems
|
Band/Volume:
|
34
|
Seitenbereich:
|
6720-6732
|
Veranstaltungstitel:
|
NeurIPS 2021
|
Veranstaltungsort:
|
Online
|
Veranstaltungsdatum:
|
06.-14.12.2021
|
Herausgeber:
|
Ranzato, Marc'Aurelio
;
Beygelzimer, Alina
;
Dauphin, Yann N.
;
Liang, Percy
;
Wortman Vaughan, Jennifer
|
Ort der Veröffentlichung:
|
Red Hook, NY
|
Verlag:
|
Curran Associates
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Numerous models for supervised and reinforcement learning benefit from combinations of discrete and continuous model components. End-to-end learnable discrete-continuous models are compositional, tend to generalize better, and are more interpretable. A popular approach to building discrete-continuous computation graphs is that of integrating discrete probability distributions into neural networks using stochastic softmax tricks. Prior work has mainly focused on computation graphs with a single discrete component on each of the graph's execution paths. We analyze the behavior of more complex stochastic computations graphs with multiple sequential discrete components. We show that it is challenging to optimize the parameters of these models, mainly due to small gradients and local minima. We then propose two new strategies to overcome these challenges. First, we show that increasing the scale parameter of the Gumbel noise perturbations during training improves the learning behavior. Second, we propose dropout residual connections specifically tailored to stochastic, discrete-continuous computation graphs. With an extensive set of experiments, we show that we can train complex discrete-continuous models which one cannot train with standard stochastic softmax tricks. We also show that complex discrete-stochastic models generalize better than their continuous counterparts on several benchmark datasets.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|