Towards utilitarian online learning - A review of online algorithms in open feature space


He, Yi ; Schreckenberger, Christian ; Stuckenschmidt, Heiner ; Wu, Xindong



DOI: https://doi.org/10.24963/ijcai.2023/745
URL: https://www.ijcai.org/proceedings/2023/745
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2023
Buchtitel: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
Seitenbereich: 6647-6655
Veranstaltungstitel: International Joint Conference on Artificial Intelligence
Veranstaltungsort: Macao SAR, China
Veranstaltungsdatum: 19.-25.08.2023
Herausgeber: Elkind, Edith
Ort der Veröffentlichung: Macao SAR
Verlag: International Joint Conferences on Artificial Intelligence Organization
ISBN: 978-1-956792-03-4
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
Abstract: Human intelligence comes from the capability to describe and make sense of the world surrounding us, often in a lifelong manner. Online Learning (OL) allows a model to simulate this capability, which involves processing data in sequence, making predictions, and learning from predictive errors. However, traditional OL assumes a fxed set of features to describe data, which can be restrictive. In reality, new features may emerge and old features may vanish or become obsolete, leading to an open feature space. This dynamism can be caused by more advanced or outdated technology for sensing the world, or it can be a natural process of evolution. This paper reviews recent breakthroughs that strived to enable OL in open feature spaces, referred to as Utilitarian Online Learning (UOL). We taxonomize existing UOL models into three categories, analyze their pros and cons, and discuss their application scenarios. We also benchmark the performance of representative UOL models, highlighting open problems, challenges, and potential future directions of this emerging topic.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen