ZusammenQA: Data augmentation with specialized models for cross-lingual open-retrieval question answering system


Hung, Chia-Chien ; Green, Tommaso ; Litschko, Robert ; Tsereteli, Tornike ; Takeshita, Sotaro ; Bombieri, Marco ; Glavaš, Goran ; Ponzetto, Simone Paolo



DOI: https://doi.org/10.18653/v1/2022.mia-1.8
URL: https://aclanthology.org/2022.mia-1.8
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2022
Buchtitel: Proceedings of the Workshop on Multilingual Information Access (MIA)
Seitenbereich: 77-90
Veranstaltungstitel: 1st Workshop on Multilingual Information Access (MIA)
Veranstaltungsort: Seattle, WA
Veranstaltungsdatum: 15.07.2022
Herausgeber: Asai, Akari ; Choi, Eunsol ; Clark, Jonathan H. ; Hu, Junjie ; Lee, Chia-Hsuan ; Kasai, Jungo ; Longpre, Shayne ; Yamada, Ikuya ; Zhang, Rui
Ort der Veröffentlichung: Seattle, USA
Verlag: Association for Computational Linguistics
ISBN: 978-1-955917-89-6
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Information Systems III: Enterprise Data Analysis (Ponzetto 2016-)
Fachgebiet: 004 Informatik
Abstract: This paper introduces our proposed system for the MIA Shared Task on Cross-lingual Openretrieval Question Answering (COQA). In this challenging scenario, given an input question the system has to gather evidence documents from a multilingual pool and generate from them an answer in the language of the question. We devised several approaches combining different model variants for three main components: Data Augmentation, Passage Retrieval, and Answer Generation. For passage retrieval, we evaluated the monolingual BM25 ranker against the ensemble of re-rankers based on multilingual pretrained language models (PLMs) and also variants of the shared task baseline, re-training it from scratch using a recently introduced contrastive loss that maintains a strong gradient signal throughout training by means of mixed negative samples. For answer generation, we focused on languageand domain-specialization by means of continued language model (LM) pretraining of existing multilingual encoders. Additionally, for both passage retrieval and answer generation, we augmented the training data provided by the task organizers with automatically generated question-answer pairs created from Wikipedia passages to mitigate the issue of data scarcity, particularly for the low-resource languages for which no training data were provided. Our results show that language- and domain-specialization as well as data augmentation help, especially for low-resource languages.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen