Start small, think big: On hyperparameter optimization for large-scale knowledge graph embeddings


Kochsiek, Adrian ; Niesel, Fritz ; Gemulla, Rainer



DOI: https://doi.org/10.1007/978-3-031-26390-3_9
URL: https://link.springer.com/chapter/10.1007/978-3-03...
Additional URL: https://www.researchgate.net/publication/369310138...
Document Type: Conference or workshop publication
Year of publication: 2023
Book title: Machine learning and knowledge discovery in databases : European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022 : proceedings. Part II
The title of a journal, publication series: Lecture Notes in Computer Science
Volume: 13714
Page range: 138-154
Conference title: ECML PKDD 2022
Location of the conference venue: Grenoble, France
Date of the conference: 19.-23.09.2022
Publisher: Amini, Massih-Reza ; Canu, Stéphane ; Fischer, Asja ; et al.
Place of publication: Berlin [u.a.]
Publishing house: Springer
ISBN: 978-3-031-26389-7 , 978-3-031-26390-3
ISSN: 0302-9743 , 1611-3349
Publication language: English
Institution: School of Business Informatics and Mathematics > Practical Computer Science I: Data Analytics (Gemulla 2014-)
Subject: 004 Computer science, internet
Keywords (English): knowledge graph embedding , multi-fidelity hyperparameter optimization , low-fidelity approximation




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadata export


Citation


+ Search Authors in

BASE: Kochsiek, Adrian ; Niesel, Fritz ; Gemulla, Rainer

Google Scholar: Kochsiek, Adrian ; Niesel, Fritz ; Gemulla, Rainer

ORCID: Kochsiek, Adrian ; Niesel, Fritz ; Gemulla, Rainer ORCID: 0000-0003-2762-0050

+ Page Views

Hits per month over past year

Detailed information



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item