Detecting differential item functioning in multidimensional graded response models with recursive partitioning


Classe, Franz ; Kern, Christoph


[img] PDF
classe-kern-2024-detecting-differential-item-functioning-in-multidimensional-graded-response-models-with-recursive.pdf - Veröffentlichte Version

Download (765kB)

DOI: https://doi.org/10.1177/01466216241238743
URL: https://journals.sagepub.com/doi/10.1177/014662162...
URN: urn:nbn:de:bsz:180-madoc-668938
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr Online: 2024
Titel einer Zeitschrift oder einer Reihe: Applied Psychological Measurement
Band/Volume: tba
Heft/Issue: tba
Seitenbereich: 1-21
Ort der Veröffentlichung: Thousand Oaks, CA
Verlag: Sage Publications
ISSN: 0146-6216 , 1552-3497
Sprache der Veröffentlichung: Englisch
Einrichtung: Außerfakultäre Einrichtungen > MZES - Arbeitsbereich A
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 310 Statistik
Freie Schlagwörter (Englisch): differential item functioning , multidimensional item response theory , graded response model , categorical analysis , surveys , algorithmic modeling , machine learning
Abstract: Differential item functioning (DIF) is a common challenge when examining latent traits in large scale surveys. In recent work, methods from the field of machine learning such as model-based recursive partitioning have been proposed to identify subgroups with DIF when little theoretical guidance and many potential subgroups are available. On this basis, we propose and compare recursive partitioning techniques for detecting DIF with a focus on measurement models with multiple latent variables and ordinal response data. We implement tree-based approaches for identifying subgroups that contribute to DIF in multidimensional latent variable modeling and propose a robust, yet scalable extension, inspired by random forests. The proposed techniques are applied and compared with simulations. We show that the proposed methods are able to efficiently detect DIF and allow to extract decision rules that lead to subgroups with well fitting models.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Diese Publikation ist bisher nur Online erschienen. Diese Publikation nun als "Jetzt in Print erschienen" melden.




Metadaten-Export


Zitation


+ Suche Autoren in

BASE: Classe, Franz ; Kern, Christoph

Google Scholar: Classe, Franz ; Kern, Christoph

ORCID: Classe, Franz ; Kern, Christoph ORCID: 0000-0001-7363-4299

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen