Enabling mixed effects neural networks for diverse, clustered data using Monte Carlo methods


Tschalzev, Andrej ; Nitschke, Paul ; Kirchdorfer, Lukas ; Lüdtke, Stefan ; Bartelt, Christian ; Stuckenschmidt, Heiner



Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2024
Buchtitel: Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence: Jeju, 03-09 August 2024
Band/Volume: tba
Seitenbereich: tba
Veranstaltungstitel: IJCAI 2024, 33rd International Joint Conference on Artificial Intelligence
Veranstaltungsort: Jeju, South Korea
Veranstaltungsdatum: 03.-09.08.2024
Ort der Veröffentlichung: Jeju, South Korea
Verlag: International Joint Conferences on Artificial Intelligence
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Außerfakultäre Einrichtungen > Institut für Enterprise Systems (InES)
Fachgebiet: 004 Informatik
Freie Schlagwörter (Englisch): machine learning , artificial intelligence , deep learning
Abstract: Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen