MIND your language: A multilingual dataset for cross-lingual news recommendation


Iana, Andreea ; Glavaš, Goran ; Paulheim, Heiko


[img] PDF
3626772.3657867.pdf - Veröffentlichte Version

Download (1MB)

DOI: https://doi.org/10.1145/3626772.3657867
URL: https://dl.acm.org/doi/10.1145/3626772.3657867
URN: urn:nbn:de:bsz:180-madoc-675679
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2024
Buchtitel: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024, Washington DC, USA, July 14-18, 2024
Seitenbereich: 553-563
Veranstaltungstitel: SIGIR '24, 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
Veranstaltungsort: Washington, DC
Veranstaltungsdatum: 14.-18.7.2024
Herausgeber: Yang, Grace Hui ; Wang, Hongning ; Han, Sam ; Hauff, Claudia ; Zuccon, Guido ; Zhang, Yi
Ort der Veröffentlichung: New York
Verlag: ACM
ISBN: 979-8-4007-0431-4
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Data Science (Paulheim 2018-)
Bereits vorhandene Lizenz: Creative Commons Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen 4.0 International (CC BY-NC-SA 4.0)
Fachgebiet: 004 Informatik
Freie Schlagwörter (Englisch): multilingual news dataset , news recommendation , low-resource languages , cross-lingual recommendation , machine translation
Abstract: Digital news platforms use news recommenders as the main instrument to cater to the individual information needs of readers. Despite an increasingly language-diverse online community, in which many Internet users consume news in multiple languages, the majority of news recommendation focuses on major, resource-rich languages. Moreover, nearly all news recommendation efforts assume monolingual news consumption, whereas more and more users tend to consume information in at least two languages. Accordingly, the existing body of work on news recommendation suffers from a lack of publicly available multilingual benchmarks that would catalyze development of news recommenders effective in multilingual settings and for low-resource languages. Aiming to fill this gap, we introduce xMIND, an open, multilingual news recommendation dataset derived from the English MIND dataset using machine translation, covering a set of 14 linguistically and geographically diverse languages, with digital footprints of varying sizes. Using xMIND, we systematically benchmark several content-based neural news recommenders (NNRs) in zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer scenarios, considering both monolingual and bilingual news consumption patterns. Our findings reveal that (i) current NNRs, even when based on a multilingual language model, suffer from substantial performance losses under ZS-XLT and that (ii) inclusion of target-language data in FS-XLT training has limited benefits, particularly when combined with a bilingual news consumption. Our findings thus warrant a broader research effort in multilingual and cross-lingual news recommendation.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen