Multi-accurate CATE is robust to unknown covariate shifts
Kern, Christoph
;
Kim, Michael P.
;
Zhou, Angela
URL:
|
https://openreview.net/forum?id=VOGlTb27ob
|
Weitere URL:
|
https://jmlr.org/tmlr/papers/
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr Online:
|
2024
|
Datum:
|
29 Oktober 2024
|
Titel einer Zeitschrift oder einer Reihe:
|
Transactions on Machine Learning Research : TMLR
|
Band/Volume:
|
tba
|
Heft/Issue:
|
tba
|
Seitenbereich:
|
1-59
|
Ort der Veröffentlichung:
|
[Amherst, Massachusetts]
|
Verlag:
|
OpenReview.net
|
ISSN:
|
2835-8856
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Außerfakultäre Einrichtungen > MZES - Arbeitsbereich A
|
Fachgebiet:
|
310 Statistik
|
Abstract:
|
Estimating heterogeneous treatment effects is important to tailor treatments to those individuals who would most likely benefit. However, conditional average treatment effect predictors may often be trained on one population but possibly deployed on different, possibly unknown populations. We use methodology for learning multi-accurate predictors to post-process CATE T-learners (differenced regressions) to become robust to unknown covariate shifts at the time of deployment. The method works in general for pseudo-outcome regression, such as the DR-learner. We show how this approach can combine (large) confounded observational and (smaller) randomized datasets by learning a confounded predictor from the observational dataset, and auditing for multi-accuracy on the randomized controlled trial. We show improvements in bias and mean squared error in simulations with increasingly larger covariate shift, and on a semi-synthetic case study of a parallel large observational study and smaller randomized controlled experiment. Overall, we establish a connection between methods developed for multi-distribution learning and achieve appealing desiderata (e.g. external validity) in causal inference and machine learning.
|
Zusätzliche Informationen:
|
Featured Certification
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
| Diese Publikation ist bisher nur Online erschienen. Diese Publikation nun als "Jetzt in Print erschienen" melden. |
Suche Autoren in
BASE:
Kern, Christoph
;
Kim, Michael P.
;
Zhou, Angela
Google Scholar:
Kern, Christoph
;
Kim, Michael P.
;
Zhou, Angela
ORCID:
Kern, Christoph ORCID: https://orcid.org/0000-0001-7363-4299, Kim, Michael P. and Zhou, Angela
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|