Investigating demographic features and their connection to performance, predictions, and fairness in EDM models


Cohausz, Lea ; Tschalzev, Andrej ; Bartelt, Christian ; Stuckenschmidt, Heiner



DOI: https://doi.org/10.5281/zenodo.14503515
URL: https://jedm.educationaldatamining.org/index.php/J...
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2024
Titel einer Zeitschrift oder einer Reihe: Journal of Educational Data Mining
Band/Volume: 16
Heft/Issue: 2
Seitenbereich: 177-213
Ort der Veröffentlichung: Montreal
Verlag: International Educational Data Mining Society
ISSN: 2157-2100
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
Abstract: Although using demographic features for predictive models in Educational Data Mining (EDM) has to be considered very problematic from a fairness point of view and is currently critically discussed in the field, they are, in practice, frequently used without much deliberate thought. Their use and the discussion around their use mostly rely on the belief that they help achieve high model performance. In this paper, we theoretically and empirically assess the mechanisms that make them relevant for prediction and what this means for notions of fairness. Using four datasets for at-risk prediction, we find evidence that re- moving demographic features does not usually lead to a decrease in performance but also that we may sometimes be wrong in aiming to achieve the most accurate predictions. Furthermore, we show that mod- els, nonetheless, place weight on these features when they are included – highlighting the need to exclude them. Additionally, we show that even when demographic features are excluded, some fairness concerns relating to group fairness metrics may persist. These findings strongly highlight the need to know more about the causal mechanisms underlying the data and to think critically about demographic features in each specific setting – emphasizing the need for more research on how demographic features influence educational attainment. Our code is available at: https://github.com/atschalz/edm.


SDG 4: Hochwertige BildungSDG 10: Weniger Ungleichheiten


Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen