Fairness in algorithmic profiling: The AMAS case


Achterhold, Eva ; Mühlböck, Monika ; Steiber, Nadia ; Kern, Christoph


[img] PDF
s11023-024-09706-9.pdf - Veröffentlichte Version

Download (1MB)

DOI: https://doi.org/10.1007/s11023-024-09706-9
URL: https://link.springer.com/article/10.1007/s11023-0...
Weitere URL: https://www.researchgate.net/publication/388495411...
URN: urn:nbn:de:bsz:180-madoc-689558
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr Online: 2025
Datum: 29 Januar 2025
Titel einer Zeitschrift oder einer Reihe: Minds and Machines
Band/Volume: 35
Heft/Issue: 1, Article 9
Seitenbereich: 1-30
Ort der Veröffentlichung: Dordrecht [u.a.]
Verlag: Kluwer Academic Publ. ; Springer Science + Business Media B.V.
ISSN: 0924-6495 , 1572-8641
Sprache der Veröffentlichung: Englisch
Einrichtung: Außerfakultäre Einrichtungen > MZES - Arbeitsbereich A
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 004 Informatik
Freie Schlagwörter (Englisch): algorithmic profiling , statistical discrimination , public employment services , artificial intelligence , bias mitigation
Abstract: We study a controversial application of algorithmic profiling in the public sector, the Austrian AMAS system. AMAS was supposed to help caseworkers at the Public Employment Service (PES) Austria to allocate support measures to job seekers based on their predicted chance of (re-)integration into the labor market. Shortly after its release, AMAS was criticized for its apparent unequal treatment of job seekers based on gender and citizenship. We systematically investigate the AMAS model using a novel real-world dataset of young job seekers from Vienna, which allows us to provide the first empirical evaluation of the AMAS model with a focus on fairness measures. We further apply bias mitigation strategies to study their effectiveness in our real-world setting. Our findings indicate that the prediction performance of the AMAS model is insufficient for use in practice, as more than 30 of job seekers would be misclassified in our use case. Further, our results confirm that the original model is biased with respect to gender as it tends to (incorrectly) assign women to the group with high chances of re-employment, which is not prioritized in the PES’ allocation of support measures. However, most bias mitigation strategies were able to improve fairness without compromising performance and thus may form an important building block in revising profiling schemes in the present context.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Diese Publikation ist bisher nur Online erschienen. Diese Publikation nun als "Jetzt in Print erschienen" melden.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen