Mitigating information loss in tree-based reinforcement learning via direct optimization
Marton, Sascha
;
Grams, Tim
;
Vogt, Florian
;
Lüdtke, Stefan
;
Bartelt, Christian
;
Stuckenschmidt, Heiner
![[img]](https://madoc.bib.uni-mannheim.de/style/images/fileicons/application_pdf.png) |
PDF
1507_Mitigating_Information_Lo.pdf
- Veröffentlichte Version
Download (1MB)
|
URL:
|
https://openreview.net/forum?id=qpXctF2aLZ
|
URN:
|
urn:nbn:de:bsz:180-madoc-695066
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr Online:
|
2025
|
Buchtitel:
|
The Thirteens International Conference on Learning Representations
|
Veranstaltungstitel:
|
ICLR 2025, The Thirteenth International Conference on Learning Representations
|
Veranstaltungsort:
|
Singapur, Singapore
|
Veranstaltungsdatum:
|
24.-28.04.2025
|
Verlag:
|
OpenReview.net
|
Verwandte URLs:
|
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Außerfakultäre Einrichtungen > Institut für Enterprise Systems (InES) Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
|
Bereits vorhandene Lizenz:
|
Creative Commons Namensnennung 4.0 International (CC BY 4.0)
|
Fachgebiet:
|
004 Informatik
|
Freie Schlagwörter (Englisch):
|
symbolic reinforcement learning , interpretable reinforcement learning , reinforcement learning , decision trees , policy gradient , proximal policy optimization
|
Abstract:
|
Reinforcement learning (RL) has seen significant success across various domains, but its adoption is often limited by the black-box nature of neural network policies, making them difficult to interpret. In contrast, symbolic policies allow representing decision-making strategies in a compact and interpretable way. However, learning symbolic policies directly within on-policy methods remains challenging. In this paper, we introduce SYMPOL, a novel method for SYMbolic tree-based on-POLicy RL. SYMPOL employs a tree-based model integrated with a policy gradient method, enabling the agent to learn and adapt its actions while maintaining a high level of interpretability. We evaluate SYMPOL on a set of benchmark RL tasks, demonstrating its superiority over alternative tree-based RL approaches in terms of performance and interpretability. Unlike existing methods, it enables gradient-based, end-to-end learning of interpretable, axis-aligned decision trees within standard on-policy RL algorithms. Therefore, SYMPOL can become the foundation for a new class of interpretable RL based on decision trees. Our implementation is available under: https://github.com/s-marton/sympol
|
 | Dieser Eintrag ist Teil der Universitätsbibliographie. |
 | Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt. |
 | Diese Publikation ist bisher nur Online erschienen. Diese Publikation nun als "Jetzt in Print erschienen" melden. |
Suche Autoren in
BASE:
Marton, Sascha
;
Grams, Tim
;
Vogt, Florian
;
Lüdtke, Stefan
;
Bartelt, Christian
;
Stuckenschmidt, Heiner
Google Scholar:
Marton, Sascha
;
Grams, Tim
;
Vogt, Florian
;
Lüdtke, Stefan
;
Bartelt, Christian
;
Stuckenschmidt, Heiner
ORCID:
Marton, Sascha ORCID: 0000-0001-8151-9223 ; Grams, Tim ; Vogt, Florian ; Lüdtke, Stefan ; Bartelt, Christian ; Stuckenschmidt, Heiner ORCID: 0000-0002-0209-3859
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
 |
Eintrag anzeigen |
|