Decision trees that remember: Gradient-based learning of recurrent decision trees with memory


Marton, Sascha ; Schneider, Moritz ; Brinkmann, Jannik ; Lüdtke, Stefan ; Bartelt, Christian ; Stuckenschmidt, Heiner


[img] PDF
2_Decision_Trees_That_Remember.pdf - Veröffentlichte Version

Download (2MB)

URL: https://openreview.net/forum?id=u2Hh24rxW1&noteId=...
URN: urn:nbn:de:bsz:180-madoc-695074
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2025
Buchtitel: The Thirteens International Conference on Learning Representations
Veranstaltungstitel: New Frontiers in Associative Memory workshop at ICLR 2025
Veranstaltungsort: Singapur, Singapore
Veranstaltungsdatum: 28.04.2025
Verlag: OpenReview.net
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Außerfakultäre Einrichtungen > Institut für Enterprise Systems (InES)
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 004 Informatik
Freie Schlagwörter (Englisch): decision tree , sequential data , time series data , recurrent decision tree
Abstract: Neural architectures such as Recurrent Neural Networks (RNNs), Transformers, and State-Space Models have shown great success in handling sequential data by learning temporal dependencies. Decision Trees (DTs), on the other hand, remain a widely used class of models for structured tabular data but are typically not designed to capture sequential patterns directly. Instead, DT-based approaches for time-series data often rely on feature engineering, such as manually incorporating lag features, which can be suboptimal for capturing complex temporal dependencies. To address this limitation, we introduce ReMeDe Trees, a novel recurrent decision tree architecture that integrates an internal memory mechanism, similar to RNNs, to learn long-term dependencies in sequential data. Our model learns hard, axis-aligned decision rules for both output generation and state updates, optimizing them efficiently via gradient descent. We provide a proof-of-concept study on synthetic benchmarks to demonstrate the effectiveness of our approach.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen