Location matching on shaky grounds: Re-evaluating algorithms for refugee allocation


Strasser Ceballos, Clara ; Kern, Christoph


[img] PDF
3715275.3732149.pdf - Veröffentlichte Version

Download (669kB)

DOI: https://doi.org/10.1145/3715275.3732149
URL: https://dl.acm.org/doi/10.1145/3715275.3732149
URN: urn:nbn:de:bsz:180-madoc-704854
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2025
Buchtitel: ACM FAccT '25 : Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency, June 23-26,2025, Athens, Greece
Seitenbereich: 2180-2199
Veranstaltungstitel: FAccT '25, 8th Annual ACM Conference on Fairness, Accountability, and Transparency (FAccT)
Veranstaltungsort: Athen, Greece
Veranstaltungsdatum: 23.-26.06.2025
Herausgeber: Biega, Asia ; Metaxa, Danaé ; Papakyriakopoulos, Orestis
Ort der Veröffentlichung: New York, NY, USA
Verlag: Association for Computing Machinery
ISBN: 979-8-4007-1482-5
Sprache der Veröffentlichung: Englisch
Einrichtung: Außerfakultäre Einrichtungen > MZES - Arbeitsbereich A
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 004 Informatik
Freie Schlagwörter (Englisch): matching tools , integration , refugees , fairness evaluation
Abstract: The initial location to which refugees are assigned upon arrival in a host country plays a key role in their integration. Several research groups have developed tools to optimize refugee-location matching, with the overall aim of improving refugees’ integration outcomes. Four primary tools are already being piloted across various countries: GeoMatch, Annie™ Moore, Match’In, and Re:Match. The first two tools combine supervised machine learning with optimal matching techniques, while the latter two rely on heuristic methods to match refugee preferences with suitable locations. These tools are used in a highly sensitive context and directly impact human lives. It is, therefore, not only desirable but critical to (re-)evaluate them through the lens of algorithmic fairness. We contribute in three key aspects: First, we provide a comprehensive overview and systematization of the tools aimed at the algorithmic fairness community. Second, we identify sources of biases along the tool design stages that can contribute to disparate impacts downstream. Finally, we simulate the application of the GeoMatch tool using German survey data to empirically illustrate the impact of target variable choice on matching outcomes. While GeoMatch optimizes economic integration, we demonstrate that the integration gains differ substantially when social integration is prioritized instead. With our use case, we highlight the susceptibility of algorithmic matching tools to design decisions such as the operationalization of the integration outcome and emphasize the need for more holistic evaluations of their social impacts.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen