Location matching on shaky grounds: Re-evaluating algorithms for refugee allocation
Strasser Ceballos, Clara
;
Kern, Christoph
DOI:
|
https://doi.org/10.1145/3715275.3732149
|
URL:
|
https://dl.acm.org/doi/10.1145/3715275.3732149
|
URN:
|
urn:nbn:de:bsz:180-madoc-704854
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2025
|
Buchtitel:
|
ACM FAccT '25 : Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency, June 23-26,2025, Athens, Greece
|
Seitenbereich:
|
2180-2199
|
Veranstaltungstitel:
|
FAccT '25, 8th Annual ACM Conference on Fairness, Accountability, and Transparency (FAccT)
|
Veranstaltungsort:
|
Athen, Greece
|
Veranstaltungsdatum:
|
23.-26.06.2025
|
Herausgeber:
|
Biega, Asia
;
Metaxa, Danaé
;
Papakyriakopoulos, Orestis
|
Ort der Veröffentlichung:
|
New York, NY, USA
|
Verlag:
|
Association for Computing Machinery
|
ISBN:
|
979-8-4007-1482-5
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Außerfakultäre Einrichtungen > MZES - Arbeitsbereich A
|
Bereits vorhandene Lizenz:
|
Creative Commons Namensnennung 4.0 International (CC BY 4.0)
|
Fachgebiet:
|
004 Informatik
|
Freie Schlagwörter (Englisch):
|
matching tools , integration , refugees , fairness evaluation
|
Abstract:
|
The initial location to which refugees are assigned upon arrival in a host country plays a key role in their integration. Several research groups have developed tools to optimize refugee-location matching, with the overall aim of improving refugees’ integration outcomes. Four primary tools are already being piloted across various countries: GeoMatch, Annie™ Moore, Match’In, and Re:Match. The first two tools combine supervised machine learning with optimal matching techniques, while the latter two rely on heuristic methods to match refugee preferences with suitable locations. These tools are used in a highly sensitive context and directly impact human lives. It is, therefore, not only desirable but critical to (re-)evaluate them through the lens of algorithmic fairness. We contribute in three key aspects: First, we provide a comprehensive overview and systematization of the tools aimed at the algorithmic fairness community. Second, we identify sources of biases along the tool design stages that can contribute to disparate impacts downstream. Finally, we simulate the application of the GeoMatch tool using German survey data to empirically illustrate the impact of target variable choice on matching outcomes. While GeoMatch optimizes economic integration, we demonstrate that the integration gains differ substantially when social integration is prioritized instead. With our use case, we highlight the susceptibility of algorithmic matching tools to design decisions such as the operationalization of the integration outcome and emphasize the need for more holistic evaluations of their social impacts.
|
 | Dieser Eintrag ist Teil der Universitätsbibliographie. |
 | Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
 |
Eintrag anzeigen |
|