TGB 2.0: A benchmark for learning on temporal knowledge graphs and heterogeneous graphs


Gastinger, Julia ; Huang, Shenyang ; Galkin, Mikhail ; Loghmani, Erfan ; Parviz, Ali ; Poursafaei, Farimah ; Danovitch, Jacob ; Rossi, Emanuele ; Koutis, Ioannis ; Stuckenschmidt, Heiner ; Rabbany, Reihaneh ; Rabusseau, Guillaume



URL: https://papers.nips.cc/paper_files/paper/2024/hash...
Weitere URL: https://openreview.net/forum?id=EADRzNJFn1#discuss...
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2024
Buchtitel: Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Datasets and Benchmarks Track
Seitenbereich: 140199-140229
Veranstaltungstitel: NeurIPS 2024
Veranstaltungsort: Vancouver, Canada
Veranstaltungsdatum: 09.-15.12.2024
Herausgeber: Globerson, A. ; Mackey, L. ; Belgrave, D. ; Fan, A. ; Paquet, U. ; Tomczak, J. ; Zhang, C.
Ort der Veröffentlichung: Vancouver, BC
Verlag: Curran Associates, Inc.
Verwandte URLs:
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
Abstract: Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entities over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 facilitates comprehensive evaluations by presenting eight novel datasets spanning five domains with up to 53 million edges. TGB 2.0 datasets are significantly largerthan existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs. Through extensive experimentation, we observe that 1) leveraging edge-type information is crucial to obtain high performance, 2) simple heuristic baselines are often competitive with more complex methods, 3) most methods fail to run on our largest datasets, highlighting the need for research on more scalable methods.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen