Effectively Finding the Optimal Wavelet for Hybrid Wavelet - Large Margin Signal Classification

Neumann, Julia ; Schnörr, Christoph ; Steidl, Gabriele

optim.pdf - Published

Download (371kB)

URL: https://ub-madoc.bib.uni-mannheim.de/734
URN: urn:nbn:de:bsz:180-madoc-7347
Document Type: Working paper
Year of publication: 2003
The title of a journal, publication series: Technical Reports
Volume: 03-005
Place of publication: Mannheim
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Informatik > Technical Reports
Subject: 004 Computer science, internet
Subject headings (SWD): Klassifikation , Wavelet
Keywords (English): filter design , signal and image classification , wavelets , Support Vector Machine
Abstract: For hybrid wavelet - large margin classifiers, adapting the wavelet may significantly improve the classification performance. We propose to select the wavelet with respect to a large margin classifier and data to improve class separability and minimise the generalisation error. In this paper, we show that this wavelet adaptation problem can be formulated as an optimisation problem with polynomial objective function and investigate some techniques to solve it. In particular, we propose an adaptive grid search algorithm that efficiently solves the problem compared with standard optimisation techniques.
Additional information:

Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Metadata export


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics

You have found an error? Please let us know about your desired correction here: E-Mail

Actions (login required)

Show item Show item