Classification of Human Decision Behavior : Finding Modular Decision Rules with Genetic Algorithms


Rothlauf, Franz ; Schunk, Daniel ; Pfeiffer, Jella


[img]
Vorschau
PDF
079_05.pdf - Veröffentlichte Version

Download (434kB)

URL: https://ub-madoc.bib.uni-mannheim.de/1268
URN: urn:nbn:de:bsz:180-madoc-12685
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2005
Titel einer Zeitschrift oder einer Reihe: MEA Discussion Papers
Band/Volume: 079
Ort der Veröffentlichung: Mannheim
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Rechtswissenschaft und Volkswirtschaftslehre > Sonstige - Fakultät für Rechtswissenschaft und Volkswirtschaftslehre
MADOC-Schriftenreihe: Veröffentlichungen des MEA (Mannheim Research Institute For the Economics of Aging) > MEA Discussion Papers
Fachgebiet: 330 Wirtschaft
Normierte Schlagwörter (SWD): Verhalten , Genetischer Algorithmus , Entscheidungsverhalten
Abstract: The understanding of human behavior in sequential decision tasks is important for economics and socio-psychological sciences. In search taks, for example when individuals search for the best price of a product, they are confronted in sequential steps with different situations and they have to decide whether to continue or stop searching. The decision behavior of individuals in such search tasks is described by a search strategy. This paper presents a new approach of finding high-equality search strategies by using genetic algorithms (GAs). Only the structure of the search strategies and the basic building blocks (price thresholds and price patterns) that can be used for the search strategies are pre-specific. It is the purpose of the GA to construct search strategies that well describe human behavior. The search strategies found by the GA are able to predict human behavior in search tasks better than traditional search strategies from the literature which are usually based on theoretical assumptions about human behavior in search tasks. Furthermore, the found search strategies are resonable in the sense that they can be well interpreted, and generally that means they describe the search behavior of a larger group of individuals and allow some kind of categorization and classification. The results of this study open a new perspective for future research in developing behavioral strategies. Instead of deriving search strategies from theoretical assumptions about human behavior, researchers can directly analyze human behavior in search tasks and find appropriate and high-quality search strategies. These can be used for gaining new insights into the motivation behind human search and for developing new theoretical models about human search behavior.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen