Deformation quantization of compact Kähler manifolds via Berezin-Toeplitz operators


Schlichenmaier, Martin


[img]
Preview
PDF
talk.pdf - Published

Download (183kB)

URL: http://ub-madoc.bib.uni-mannheim.de/1322
URN: urn:nbn:de:bsz:180-madoc-13223
Document Type: Working paper
Year of publication: 1996
The title of a journal, publication series: None
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Abstract: This talk reports on results on the deformation quantization (star products) and on approximative operator representations for quantizable compact Kähler manifolds obtained via Berezin-Toeplitz operators. After choosing a holomorphic quantum line bundle the Berezin-Toeplitz operator associated to a differentiable function on the manifold is the operator defined by multiplying global holomorphic sections of the line bundle with this function and projecting the differentiable section back to the subspace of holomorphic sections. The results were obtained in (respectively based on) joint work with M. Bordemann and E. Meinrenken.
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadata export


Citation


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item