The Wess-Zumino-Witten-Novikov theory, Knizhnik-Zamolodchikov equations, and Krichever-Novikov algebras, I

Schlichenmaier, Martin ; Sheinman, Oleg K.

kztotal_29.12.pdf - Published

Download (474kB)

URN: urn:nbn:de:bsz:180-madoc-13270
Document Type: Working paper
Year of publication: 1998
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Abstract: Elements of a global operator approach to the WZWN theory for compact Riemann surfaces of arbitrary genus g are given. Sheaves of representations of affine Krichever-Novikov algebras over a dense open subset of the moduli space of Riemann surfaces (respectively of smooth, projective complex curves) with N, marked points are introduced. It is shown that the tangent space of the moduli space at an arbitrary moduli point is isomorphic to a certain subspace of the Krichever-Novikov vector field algebra given by the data of the moduli point. This subspace is complementary to the direct sum of the two subspaces containing the vector fields which vanish at the marked points, respectively which are regular at a fixed reference point. For each representation of the affine algebra 3g-3+N equations $\partial_k+T[e_k])\Phi
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Metadata export


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics

You have found an error? Please let us know about your desired correction here: E-Mail

Actions (login required)

Show item Show item