For arbitrary compact quantizable Kähler manifolds it is shown how a natural formal deformation quantization (star product) can be obtained via Berezin-Toeplitz operators. Results on their semi-classical behaviour (their asymptotic expansion) due to Bordemann, Meinrenken and Schlichenmaier are used in an essential manner. It is shown that the star product is null on constants and fulfills parity. A trace is constructed and the relation to deformation quantization by geometric quantization is given.
Additional information:
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.