Microdata Disclosure by Resampling - Empirical Findings for Business Survey Data


Gottschalk, Sandra


[img]
Vorschau
PDF
ZEW42.pdf - Veröffentlichte Version

Download (474kB)

URL: http://ub-madoc.bib.uni-mannheim.de/152
URN: urn:nbn:de:bsz:180-madoc-1525
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2003
Titel einer Zeitschrift oder einer Reihe: None
Sprache der Veröffentlichung: Englisch
Einrichtung: Sonstige Einrichtungen > ZEW - Leibniz-Zentrum für Europäische Wirtschaftsforschung
MADOC-Schriftenreihe: Veröffentlichungen des ZEW (Leibniz-Zentrum für Europäische Wirtschaftsforschung) > ZEW Discussion Papers
Fachgebiet: 330 Wirtschaft
Fachklassifikation: JEL: C81 C15 C13 ,
Normierte Schlagwörter (SWD): Resampling
Abstract: A problem statistical oces and research institutes are faced with by releasing micro-data is the preservation of confidentiality. Traditional methods to avoid disclosure often destroy the structure of data, i.e., information loss is potentially high. In this paper I discuss an alternative technique of creating scientific-use-files, which reproduce the characteristics of the original data quite well. It is based on Fienbergs (1997 and 1994) [5], [6] idea to estimate and resample from the empirical multivariate cumulative distribution function of the data in order to get synthetic data. The procedure creates datasets - the resample - which have the same characteristics as the original survey data. In this paper I present some applications of this method with (a) simulated data and (b) innovation survey data, the Mannheim Innovation Panel (MIP), and compare resampling with a common method of disclosure control, i.e. disturbance with multiplicative error, concerning confidentiality on the one hand and the appropriateness of the disturbed data for different kinds of analyses on the other. The results show that univariate distributions can be better reproduced by unweighted resampling. Parameter estimates can be reproduced quite well if (a) the resampling procedure implements the correlation structure of the original data as a scale and (b) the data is multiplicative perturbed and a correction term is used. On average, anonymized data with multiplicative perturbed values better protect against re-identification as the various resampling methods used.
Zusätzliche Informationen:




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen