Some Analytic Aspects Concerning the Collatz Problem


Meinardus, Günter


[img]
Preview
PDF
261_2001.pdf - Published

Download (645kB)

URL: http://ub-madoc.bib.uni-mannheim.de/1608
URN: urn:nbn:de:bsz:180-madoc-16083
Document Type: Working paper
Year of publication: 2001
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Mathematik und Informatik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Classification: MSC: 05C38 05C20 11B38 ,
Subject headings (SWD): Collatz-Problem , Dirichlet-Reihe , Funktionalgleichung , Analytische Zahlentheorie
Keywords (English): Collatz Problem , the (3n + 1) conjecture , discrete dynamical systems , Dirichlet series , functional equations , analytic number theory
Abstract: A series of relatively simple equivalences to the Collatz conjecture, concerning the Collatz mapping [...] are presented. [...] The main topic of this paper consists in investigating a certain linear equation in the space of special Dirichlet series. The conjecture that this equation possesses a null space of dimension 1, generated by the Riemann zeta function, is equivalent to the Collatz conjecture. A number of analytic properties of the operator, which defines the linear equation, is given, some of them concern problems of analytic continuation in the complex domain. A few remarks with respect to generalizations of those problems conclude the paper.
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




+ Citation Example and Export

Meinardus, Günter (2001) Some Analytic Aspects Concerning the Collatz Problem. Open Access [Working paper]
[img]
Preview


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item