The Cauchy problem for the Yang-Mills-Dirac system with minimal coupling is studied under the MIT quark bag boundary conditions. An existence and uniqueness theorem for the free Dirac equation is proven under that boundary condition. The existence and uniqueness of the classical time evolution of the Yang-Mills-Dirac system in a bag is shown. To ensure sufficient differentiability of the fields we need additional boundary conditions. In the proof we use the Hodge decomposition of Yang-Mills fields and the theory of non-linear semigroups.
Zusätzliche Informationen:
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.