Gauge Symmetries of an Extended Phase Space for Yang-Mills and Dirac Fields

Schwarz, Günter ; Sniatycki, Jedrzej

198_1995.pdf - Published

Download (1MB)

URN: urn:nbn:de:bsz:180-madoc-16663
Document Type: Working paper
Year of publication: 1995
The title of a journal, publication series: None
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Subject headings (SWD): Dirac-Gleichung , Yang-Mills-Theorie , Minkowski-Raum , Cauchy-Anfangswertproblem , Lie-Algebra
Abstract: We identify an extended phase space P for minimally interacting Yang-Mills and Dirac fields in the Minkowski space. It is a Sobolev space of Cauchy data for which we prove the finite time existence and uniqueness of the evolution equations. We prove that the Lie algebra gs(P) of all infinitesimal gauge symmetries of P is a Hilbert-Lie algebra, carrying a Beppo Levi topology. The connected group GS(P) of the gauge symmetries generated by gs(P) is proved to be a Hilbert-Lie group acting properly in P. The Lie algebra gs(P) has a maximal ideal gs(P)0. We prove that the action in P of the connected group GS(P)0 generated by gs(P)0 is proper and free. The constraint set is shown to be the zero level of the equivariant momentum map corresponding to the action of GS(P)0 in P.
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Metadata export


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics

You have found an error? Please let us know about your desired correction here: E-Mail

Actions (login required)

Show item Show item