We construct Hermite interpolation sets for bivariate spline spaces of arbitrary degree and smoothness one on non-rectangular domains with uniform type triangulations. This is done by applying a general method for constructing Lagrange interpolation sets for bivariate spline spaecs of arbitrary degree and smoothness. It is shown that Hermite interpolation yields (nearly) optimal approximation order. Applications to data fitting problems and numerical examples are given.
Zusätzliche Informationen:
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.