Bivariate Interpolation by Splines and Approximation Order

Nürnberger, Günther

207_1996_bearb.pdf - Published

Download (510kB)

URN: urn:nbn:de:bsz:180-madoc-16969
Document Type: Working paper
Year of publication: 1996
The title of a journal, publication series: None
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Subject headings (SWD): Bivariater Spline , Triangulation , Hermite-Interpolation , Approximation
Abstract: We construct Hermite interpolation sets for bivariate spline spaces of arbitrary degree and smoothness one on non-rectangular domains with uniform type triangulations. This is done by applying a general method for constructing Lagrange interpolation sets for bivariate spline spaecs of arbitrary degree and smoothness. It is shown that Hermite interpolation yields (nearly) optimal approximation order. Applications to data fitting problems and numerical examples are given.
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Metadata export


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics

You have found an error? Please let us know about your desired correction here: E-Mail

Actions (login required)

Show item Show item