Efficient image segmentation using partial differential equations and morphology


Weickert, Joachim


[img]
Preview
PDF
2000_03.pdf - Published

Download (3MB)

URL: https://ub-madoc.bib.uni-mannheim.de/1808
URN: urn:nbn:de:bsz:180-madoc-18084
Document Type: Working paper
Year of publication: 2000
The title of a journal, publication series: Technical Reports
Volume: 00-03a
Place of publication: Mannheim
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Informatik > Technical Reports
Subject: 004 Computer science, internet
Classification: CCS: I.4.6 I.4.3 I.4.4. ,
Subject headings (SWD): Nichtlineare Diffusion , Variationsrechnung , Bildrekonstruktion , Additiver Operator
Keywords (English): nonlinear diffusion , variational methods , image restoration , additive operator splitting , Gaussian pyramid , watershed segmentation
Abstract: The goal of this paper is to investigate segmentation methods that combine fast preprocessing algorithms using partial differential equations (PDEs) with a watershed transformation with region merging. We consider two well-founded PDE methods: a nonlinear isotropic diffusion filter that permits edge enhancement, and a convex nonquadratic variational image restoration method which gives good denoising. For the diffusion filter, an efficient algorithm is applied using an additive operator splitting (AOS) that leads to recursive and separable filters. For the variational restoration method, a novel algorithm is developed that uses AOS schemes within a Gaussian pyramid decomposition. Examples demonstrate that preprocessing by these PDE techniques significantly improves the watershed segmentation, and that the resulting segmentation method gives better results than some traditional techniques. The algorithm has linear complexity and it can be used for arbitrary dimensional data sets. The typical CPU time for segmenting a 256² image on a modern PC is far below one second.
Additional information: Reihen-Zählung doppelt vergeben; daher auf dem Titelblatt andere Zählung angegeben!




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadata export


Citation


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item