Cumulative prospect theory and the St.Petersburg paradox


Rieger, Marc Oliver ; Wang, Mei


[img]
Preview
PDF
dp04_28.pdf - Published

Download (373kB)

URL: http://ub-madoc.bib.uni-mannheim.de/2714
URN: urn:nbn:de:bsz:180-madoc-27149
Document Type: Working paper
Year of publication: 2004
Publication language: English
Institution: School of Law and Economics > Sonstige - Fakultät für Rechtswissenschaft und Volkswirtschaftslehre
MADOC publication series: Sonderforschungsbereich 504 > Rationalitätskonzepte, Entscheidungsverhalten und ökonomische Modellierung (Laufzeit 1997 - 2008)
Subject: 330 Economics
Classification: JEL: C91 D81 ,
Subject headings (SWD): Prospect-Theorie , Erwarteter Nutzen , Entscheidung bei Unsicherheit
Keywords (English): Cumulative Prospect Theory , Probability Weighting Function , St. Petersburg Paradox
Abstract: We find that in cumulative prospect theory (CPT) with a concave value function in gains, a lottery with finite expected value may have infinite subjective value. This problem does not occur in expected utility theory. We characterize situations in CPT where the problem can be resolved. In particular, we define a class of admissible probability distributions and admissible parameter regimes for the weighting-- and value functions. In both cases, finiteness of the subjective value can be proved. Alternatively, we suggest a new weighting function for CPT which guarantees finite subjective value for all lotteries with finite expected value, independent of the choice of the value function.
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




+ Citation Example and Export

Rieger, Marc Oliver ; Wang, Mei (2004) Cumulative prospect theory and the St.Petersburg paradox. Open Access [Working paper]
[img]
Preview


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item