We study efficient, Bayes-Nash incentive compatible mechanisms in a social choice setting that allows for informational and allocative externalities. We show that such mechanisms exist only if a congruence condition relating private and social rates of information substitution is satisfied. If signals are multidimensional, the congruence condition is determined by an integrability constraint, and it can hold only in non-generic cases such as the private value case or the symmetric case. If signals are one-dimensional, the congruence condition reduces to a monotonicity constraint and it can be generically satisfied. We apply the results to the study of multi-object auctions, and we discuss why such auctions cannot be reduced to one-dimensional models without loss of generality.
Additional information:
Dieser Eintrag ist Teil der Universitätsbibliographie.
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.