A construction principle for multivariate extreme value distributions


Ballani, Felix ; Schlather, Martin


DOI: https://doi.org/10.1093/biomet/asr034
URL: https://academic.oup.com/biomet/article/98/3/633/2...
Additional URL: http://www.jstor.org/stable/23076136
Document Type: Article
Year of publication: 2011
The title of a journal, publication series: Biometrika : A Journal for the Statistical Study of Biological Problems
Volume: 98
Issue number: 3
Page range: 633-645
Place of publication: London ; Oxford
Publishing house: Biometrika Trust ; Oxford Univ. Press
ISSN: 0006-3444 , 1464-3510
Publication language: English
Institution: School of Business Informatics and Mathematics > Mathematische Statistik (Schlather 2012-)
Subject: 310 Statistics
510 Mathematics
Keywords (English): Dirichlet density, Multivariate extreme values, Parametric model, Spectral density
Abstract: We present a construction principle for the spectral density of a multivariate extreme value distribution. It generalizes the pairwise beta model introduced in the literature recently and may be used to obtain new parametric models from lower dimensional spectral densities. We illustrate the flexibility of this new class of models and apply it to a wind speed dataset.

Dieser Datensatz wurde nicht während einer Tätigkeit an der Universität Mannheim veröffentlicht, dies ist eine Externe Publikation.




+ Citation Example and Export

Ballani, Felix ; Schlather, Martin (2011) A construction principle for multivariate extreme value distributions. Biometrika : A Journal for the Statistical Study of Biological Problems London ; Oxford 98 3 633-645 [Article]


+ Search Authors in

+ Page Views

Hits per month over past year

Detailed information



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item