Stationary max-stable fields associated to negative definite functions
Kabluchko, Zakhar
;
Schlather, Martin
;
Haan, Laurens de
Document Type:
|
Article
|
Year of publication:
|
2009
|
The title of a journal, publication series:
|
The Annals of Probability
|
Volume:
|
37
|
Issue number:
|
5
|
Page range:
|
2042-2065
|
Place of publication:
|
New York, NY [u.a.]
|
Publishing house:
|
Inst. of Mathematical Statistics
|
ISSN:
|
0091-1798 , 2168-894X
|
Publication language:
|
English
|
Institution:
|
School of Business Informatics and Mathematics > Applied Stochastics (Schlather 2012-)
|
Subject:
|
510 Mathematics
|
Keywords (English):
|
Stationary max-stable processes, Gaussian processes, Poisson point processes, extremes
|
Abstract:
|
Let Wi, i∈ℕ, be independent copies of a zero-mean Gaussian process {W(t), t∈ℝd} with stationary increments and variance σ2(t). Independently of Wi, let ∑i=1∞δUi be a Poisson point process on the real line with intensity e−y dy. We show that the law of the random family of functions {Vi(⋅), i∈ℕ}, where Vi(t)=Ui+Wi(t)−σ2(t)/2, is translation invariant. In particular, the process η(t)=⋁i=1∞Vi(t) is a stationary max-stable process with standard Gumbel margins. The process η arises as a limit of a suitably normalized and rescaled pointwise maximum of n i.i.d. stationary Gaussian processes as n→∞ if and only if W is a (nonisotropic) fractional Brownian motion on ℝd. Under suitable conditions on W, the process η has a mixed moving maxima representation.
|
| Dieser Datensatz wurde nicht während einer Tätigkeit an der Universität Mannheim veröffentlicht, dies ist eine Externe Publikation. |
Search Authors in
You have found an error? Please let us know about your desired correction here: E-Mail
Actions (login required)
|
Show item |
|
|