Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and bayes estimates of a multinomial probit model


Daziano, Ricardo A. ; Achtnicht, Martin


[img]
Preview
PDF
dp12017.pdf - Published

Download (473kB)

URL: https://ub-madoc.bib.uni-mannheim.de/31396
URN: urn:nbn:de:bsz:180-madoc-313968
Document Type: Working paper
Year of publication: 2012
The title of a journal, publication series: ZEW Discussion Papers
Volume: 12-017
Place of publication: Mannheim
Publication language: English
Institution: Sonstige Einrichtungen > ZEW - Leibniz-Zentrum für Europäische Wirtschaftsforschung
MADOC publication series: Veröffentlichungen des ZEW (Leibniz-Zentrum für Europäische Wirtschaftsforschung) > ZEW Discussion Papers
Subject: 330 Economics
Classification: JEL: C25 , D12 , Q42,
Subject headings (SWD): Deutschland , Elektrofahrzeug , Wasserstoff , Konsumentenverhalten , Innovationsdiffusion , Diskrete Entscheidung , Probit-Modell , Bayes-Statistik , Schätzung
Keywords (English): discrete choice models , bayesian econometrics , low emission vehicles , charging infrastructure
Abstract: In this paper we use Bayes estimates of a multinomial probit model with fully exible substitution patterns to forecast consumer response to ultra-low-emission vehicles. In this empirical application of the probit Gibbs sampler, we use statedpreference data on vehicle choice from a Germany-wide survey of potential lightduty-vehicle buyers using computer-assisted personal interviewing. We show that Bayesian estimation of a multinomial probit model with a full covariance matrix is feasible for this medium-scale problem. Using the posterior distribution of the parameters of the vehicle choice model as well as the GHK simulator we derive the choice probabilities of the different alternatives. We first show that the Bayes point estimates of the market shares reproduce the observed values. Then, we define a base scenario of vehicle attributes that aims at representing an average of the current vehicle choice situation in Germany. Consumer response to qualitative changes in the base scenario is subsequently studied. In particular, we analyze the effect of increasing the network of service stations for charging electric vehicles as well as for refueling hydrogen. The result is the posterior distribution of the choice probabilities that represent adoption of the energy-efficient technologies.




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadata export


Citation


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item