Measuring Abnormal Credit Default Swap Spreads


Doumet, Markus ; Andres, Christian ; Betzer, André



Dokumenttyp: Präsentation auf Konferenz
Erscheinungsjahr: 2013
Veranstaltungstitel: EFMA Annual Conference
Veranstaltungsort: Reading
Veranstaltungsdatum: 26.6.2013
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Betriebswirtschaftslehre > ABWL u. Finanzierung (Theissen 2009-)
Fachgebiet: 330 Wirtschaft
Fachklassifikation: JEL: G14,
Freie Schlagwörter (Englisch): CDS spread , event study , Brown-Warner simulation
Abstract: This paper examines the size and power of test statistics designed to detect abnormal changes in credit risk as measured by credit default swap (CDS) spreads. In a spirit similar to that of Brown and Warner (1980, 1985) and Bessembinder et al. (2009), we follow a simulation approach to examine the statistical properties of normal and abnormal CDS spreads and assess the performance of normal return models and test statistics. Using daily CDS data, we find that parametric test statistics are generally inferior to non-parametric tests, with the rank test performing best. Some of the classical normal return models, such as the market model, are found to be poorly specified. A CDS factor model based on factors identified in the empirical literature is generally well specified and more powerful in detecting abnormal performance. If factor information is not available, a simple mean-adjusted approach should be used. Finally, we examine performance in the presence of event-induced variance increases and bootstrapped p-values. Our inferences hold for US and European CDS data and are not affected by reference entity credit quality.







Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen