What if we were Texas sharpshooters? Predictor reporting bias in regression analysis


Biemann, Torsten



DOI: https://doi.org/10.1177/1094428113485135
URL: http://journals.sagepub.com/doi/10.1177/1094428113...
Weitere URL: http://orm.sagepub.com/content/16/3/335
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2013
Titel einer Zeitschrift oder einer Reihe: Organizational Research Methods : ORM
Band/Volume: 16
Heft/Issue: 3
Seitenbereich: 335-363
Ort der Veröffentlichung: Thousand Oaks, Calif.
Verlag: Sage Publications
ISSN: 1094-4281 , 1552-7425
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Betriebswirtschaftslehre > ABWL, Personalmanagement u. Führung (Biemann 2013-)
Fachgebiet: 330 Wirtschaft
Freie Schlagwörter (Englisch): reporting bias , meta-analysis , regression , funnel plots , publication bias
Abstract: The author analyzes reporting biases in regression analyses. The consequences of researchers’ strategy to select significant predictors and omit nonsignificant predictors from regression analyses are examined, focusing on how this strategy—labeled the Texas sharpshooter (TS) approach—creates a predictor reporting bias (PRB) in primary studies and research syntheses. PRB was demonstrated in simulation studies when correlation coefficients from several primary regression studies with an underlying TS approach were aggregated in meta-analyses. Several important findings are noted. First, meta-analytical effect sizes of true effects can be overestimated because smaller, nonsignificant findings are omitted from regression models. Second, suppression effects of correlated predictor variables create biased effect size estimations for variables that are not related to the outcome. Finally, existing small effects are concealed, and between-study heterogeneity can be overestimated. Results show that PRB is contingent on sample size. While PRB is substantial in studies with small sample sizes (N < 100), it is negligible when large sample sizes (N > 500) are analyzed. Preconditions and remedies for reporting biases in regression analyses are discussed.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen