Bootstrapping Sample Quantiles of Discrete Data
Jentsch, Carsten
;
Leucht, Anne
Vorschau |
|
PDF
Jentsch_und_Leucht_14-15.pdf
- Veröffentlichte Version
Download (457kB)
|
URL:
|
https://ub-madoc.bib.uni-mannheim.de/36588
|
URN:
|
urn:nbn:de:bsz:180-madoc-365884
|
Dokumenttyp:
|
Arbeitspapier
|
Erscheinungsjahr:
|
2014
|
Titel einer Zeitschrift oder einer Reihe:
|
Working Paper Series
|
Band/Volume:
|
14-15
|
Ort der Veröffentlichung:
|
Mannheim
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Rechtswissenschaft und Volkswirtschaftslehre > VWL, Theoretische Ökonometrie u. Statistik (Juniorprofessur) (Leucht 2012-2014)
|
MADOC-Schriftenreihe:
|
Department of Economics > Working Paper Series
|
Fachgebiet:
|
330 Wirtschaft
|
Fachklassifikation:
|
JEL:
C13 , C15,
|
Freie Schlagwörter (Englisch):
|
Bootstrap inconsistency , Count processes , Mid-distribution function , m-out-of-n bootstrap , Integer-valued processes
|
Abstract:
|
Sample quantiles are consistent estimators for the true quantile and satisfy central limit theorems (CLTs) if the underlying distribution is continuous. If the distribution is discrete,
the situation is much more delicate. In this case, sample quantiles are known to be not
even consistent in general for the population quantiles. In a motivating example, we show that
Efron’s bootstrap does not consistently mimic the distribution of sample quantiles even in the
discrete independent and identically distributed (i.i.d.) data case. To overcome this bootstrap inconsistency, we provide two different and complementing strategies.
In the first part of this paper, we prove that m-out-of-n-type bootstraps do consistently mimic
the distribution of sample quantiles in the discrete data case. As the corresponding bootstrap confidence intervals tend to be conservative due to the discreteness of the true distribution, we propose randomization techniques to construct bootstrap confidence sets of asymptotically correct size.
In the second part, we consider a continuous modification of the cumulative distribution function and make use of mid-quantiles studied in Ma, Genton and Parzen (2011). Contrary to ordinary quantiles and due to continuity, mid-quantiles lose their discrete nature and can be estimated consistently. Moreover, Ma, Genton and Parzen (2011) proved (non-)central limit theorems for i.i.d. data, which we generalize to the time series case. However, as the mid-quantile function fails to be differentiable, classical i.i.d. or block bootstrap methods do not lead to completely
satisfactory results and m-out-of-n variants are required here as well.
The finite sample performances of both approaches are illustrated in a simulation study by comparing coverage rates of bootstrap confidence intervals.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
| Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|