Quadrature of discontinuous SDE functionals using Malliavin integration by parts


Altmayer, Martin



Dokumenttyp: Buch
Erscheinungsjahr: 2015
Ort der Veröffentlichung: München
Verlag: Verlag Dr. Hut
ISBN: 978-3-8439-2238-8
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Wirtschaftsmathematik II: Stochastische Numerik (Neuenkirch 2013-)
Fachgebiet: 510 Mathematik
Normierte Schlagwörter (SWD): Numerische Mathematik , Malliavin-Kalkül , Stochastische Differentialgleichung
Freie Schlagwörter (Englisch): Heston model , SDE , Malliavin calculus
Abstract: One of the major problems in mathematical finance is the pricing of options. This requires the computation of expectations of the form E(f(S_T)) with S_T being the solution to a stochastic differential equation at a specific time T and f being the payoff function of the option. A very popular choice for S is the Heston model. While in the one-dimensional case E(f(S_T)) can often be computed using methods based on PDEs or the FFT, multidimensional models typically require the use of Monte-Carlo methods. Here, the multilevel Monte-Carlo algorithm provides considerably better performance - a benefit that is however reduced if the function f is discontinuous. This thesis introduces an approach based on the integration by parts formula from Malliavin calculus to overcome this problem: The original function is replaced by a function containing its antiderivative and by a Malliavin weight term. We will prove that because the new functional is continuous, we can now apply multilevel Monte-Carlo to compute the value of the original expectation without performance reduction.
Zusätzliche Informationen: Zugl.: Mannheim, Univ., Diss., 2015




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen