Ranking entities for web queries through text and knowledge


Schuhmacher, Michael ; Dietz, Laura ; Ponzetto, Simone Paolo


[img]
Vorschau
PDF
p1461-schuhmacher.pdf - Veröffentlichte Version

Download (977kB)

DOI: https://doi.org/10.1145/2806416.2806480
URL: https://madoc.bib.uni-mannheim.de/39818
Weitere URL: http://dl.acm.org/citation.cfm?id=2806480
URN: urn:nbn:de:bsz:180-madoc-398182
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2015
Buchtitel: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, October 19 - 23, 2015
Seitenbereich: 1461-1470
Veranstaltungsdatum: October 19-23, 2015
Herausgeber: Bailey, James
Ort der Veröffentlichung: New York, NY [u.a.]
Verlag: ACM
ISBN: 978-1-4503-3794-6
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Semantic Web (Juniorprofessur) (Ponzetto 2013-2015)
Fachgebiet: 004 Informatik
Abstract: When humans explain complex topics, they naturally talk about involved entities, such as people, locations, or events. In this paper, we aim at automating this process by retrieving and ranking entities that are relevant to understand free-text web-style queries like Argentine British relations, which typically demand a set of heterogeneous entities with no specific target type like, for instance, Falklands-War or Margaret_Thatcher, as answer. Standard approaches to entity retrieval rely purely on features from the knowledge base. We approach the problem from the opposite direction, namely by analyzing web documents that are found to be query-relevant. Our approach hinges on entity linking technology that identifies entity mentions and links them to a knowledge base like Wikipedia. We use a learning-to-rank approach and study different features that use documents, entity mentions, and knowledge base entities – thus bridging document and entity retrieval. Since established bench- marks for this problem do not exist, we use TREC test collections for document ranking and collect custom relevance judgments for entities. Experiments on TREC Robust04 and TREC Web13/14 data show that: i) single entity features, like the frequency of occurrence within the top-ranked documents, or the query retrieval score against a knowledge base, perform generally well; ii) the best overall per- formance is achieved when combining different features that relate an entity to the query, its document mentions, and its knowledge base representation.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen