Climb or jump - status-based seeding in user-generated content network


Lanz, Andreas U. ; Goldenberg, Jacob ; Shapira, Daniel ; Stahl, Florian



Dokumenttyp: Präsentation auf Konferenz
Erscheinungsjahr: 2017
Veranstaltungstitel: 39th Annual Marketing Science Conference
Veranstaltungsort: Los Angeles, CA
Veranstaltungsdatum: 7-10th June 2017
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Betriebswirtschaftslehre > Quantitatives Marketing und Konsumentenverhalten (Stahl 2013-)
Fachgebiet: 330 Wirtschaft
Abstract: This paper addresses optimal seeding policies in user-generated content networks by challenging the role of influencers. Using data from SoundCloud, the world’s leading user-generated content network in the music domain, we study creators of music who seek to build and increase their follower base by directing promotional actions to other users of the networking platform. Focusing on the network status of both creator and seeding targets, we find that, in particular, unknown creators of music do not benefit from seeding high-status users. In fact, it appears that unknown creators should ignore predominant seeding policies and slowly “climb” across status levels of seeding targets rather than attempt to “jump” towards those with the highest status. Our research extends the existing seeding literature by introducing the concept of risk to dissemination dynamics in online communications. We show evidence that unknown creators of music do not seed specific status levels but rather choose a portfolio of seeding targets while solving risk versus return trade-offs. We discuss managerial implications for information dissemination and optimal seeding in user-generated content networks.







Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen