Fine-grained position analysis for political texts


Zirn, Cäcilia

Dies ist die aktuellste Version dieses Eintrags.


[img]
Vorschau
PDF
DissertationZirn2016.pdf - Veröffentlichte Version

Download (1MB)

URL: https://madoc.bib.uni-mannheim.de/42458
URN: urn:nbn:de:bsz:180-madoc-424585
Dokumenttyp: Dissertation
Erscheinungsjahr: 2016
Ort der Veröffentlichung: Mannheim
Hochschule: Universität Mannheim
Gutachter: Stuckenschmidt, Heiner
Datum der mündl. Prüfung: 6 September 2016
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
Normierte Schlagwörter (SWD): Text Mining
Freie Schlagwörter (Englisch): Sentiment Analysis , Position Analysis , Opinion Mining , Text Mining
Abstract: Meinungsanalyse auf politischen Textdaten hat im Bereich der Computerlinguistik in den letzten Jahren stets an Bedeutung gewonnen. Dabei werden politische Texte zumeist in voneinander diskrete Klassen unterteilt, wie zum Beispiel pro vs. contra oder links vs. rechts. In den Politikwissenschaften dagegen werden bei der Analyse von politischen Texten Positionen auf Skalen mit fließenden Werten abgebildet. Diese feingranulare Darstellung ist für die dort gegebenen Fragestellungen erforderlich. Das Feld der “quantitativen Analyse” - der automatisierten Analyse von Texten - die der traditionellen qualitativen Analyse gegenüber steht, hat erst kürzlich mehr Beachtung gefunden. Bisher werden Texte dabei zumeist lediglich durch Worthäufigkeiten dargestellt und ohne jegliche Struktur modelliert. Wir entwickeln in dieser Dissertation Ansätze basierend auf Methoden der Computerlinguistik und der Informatik, die gegeignet sind, politikwissenschaftliche Forschungsfragen zu untersuchen. Im Gegensatz zu bisherigen Arbeiten in der Computerlinguistik klassifizieren wir nicht diskrete Klassen von Meinungen, sondern projizieren feingranulare Positionen auf fließende Skalen. Darüber hinaus schreiben wir nicht Dokumenten ganzheitlich eine Position zu, sondern bestimmen die Meinungen zu den jeweiligen Themen, die in den Texten enthalten sind. Diese mehrdimensionale Meinungsanalyse ist nach unserem Kenntnisstand neu im Bereich der quantitativen Analyse. Was unsere Ansätze von anderen Methoden unterscheidet, sind insbesondere folgende zwei Eigenschaften: Zum Einen nutzen wir Wissen aus externen Quellen, das wir in die Verfahren einfließen lassen - beispielsweise integrieren wir die Beschreibungen von Ministerien des Bundestags als Definition von politischen Themenbereichen, mit welchen wir automatisch Themen in Parteiprogrammen erkennen. Zum Anderen reichern wir unsere Verfahren mit linguistischem Wissen über Textkomposition und Dialogstruktur an. Somit gelingt uns eine tiefere Modellierung der Textstruktur. Anhand der folgenden drei Fragestellungen aus dem Bereich der Politikwissenschaften untersuchen wir die Umsetzung der oben beschriebenen Methoden: 1. Multi-Dimensionale Positionsanalyse von Parteiprogrammen 2. Analyse von Themen und Positionen in der US-Präsidentschaftswahl 3. Bestimmen von Dove-Hawk-Positionen in Diskussionen der amerikanischen Zentralbank Wir zeigen, dass die vorgestellten Lösungen erfolreich feingranulare Positionen in den jeweiligen Daten erkennen und analysieren Möglichkeiten sowie Grenzen dieser zukunftsweisenden Verfahren.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Verfügbare Versionen dieses Eintrags

  • Fine-grained position analysis for political texts. (deposited 19 Jul 2017 07:40) [gerade ausgewählt]



Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen