Fine-grained Position Analysis for Political Texts


Zirn, Cäcilia

This is the latest version of this item.


[img]
Preview
PDF
DissertationZirn2016.pdf - Published

Download (1MB)

URL: https://ub-madoc.bib.uni-mannheim.de/42458
URN: urn:nbn:de:bsz:180-madoc-424585
Document Type: Doctoral dissertation
Year of publication: 2016
Place of publication: Mannheim
Publishing house: Universität Mannheim
University: Universität Mannheim
Evaluator: Stuckenschmidt, Heiner
Date of oral examination: 6 September 2016
Publication language: English
Institution: School of Business Informatics and Mathematics > Praktische Informatik II (Stuckenschmidt 2009-)
Subject: 004 Computer science, internet
Subject headings (SWD): Text Mining
Keywords (English): Sentiment Analysis , Position Analysis , Opinion Mining , Text Mining
Abstract: Meinungsanalyse auf politischen Textdaten hat im Bereich der Computerlinguistik in den letzten Jahren stets an Bedeutung gewonnen. Dabei werden politische Texte zumeist in voneinander diskrete Klassen unterteilt, wie zum Beispiel pro vs. contra oder links vs. rechts. In den Politikwissenschaften dagegen werden bei der Analyse von politischen Texten Positionen auf Skalen mit fließenden Werten abgebildet. Diese feingranulare Darstellung ist für die dort gegebenen Fragestellungen erforderlich. Das Feld der “quantitativen Analyse” - der automatisierten Analyse von Texten - die der traditionellen qualitativen Analyse gegenüber steht, hat erst kürzlich mehr Beachtung gefunden. Bisher werden Texte dabei zumeist lediglich durch Worthäufigkeiten dargestellt und ohne jegliche Struktur modelliert. Wir entwickeln in dieser Dissertation Ansätze basierend auf Methoden der Computerlinguistik und der Informatik, die gegeignet sind, politikwissenschaftliche Forschungsfragen zu untersuchen. Im Gegensatz zu bisherigen Arbeiten in der Computerlinguistik klassifizieren wir nicht diskrete Klassen von Meinungen, sondern projizieren feingranulare Positionen auf fließende Skalen. Darüber hinaus schreiben wir nicht Dokumenten ganzheitlich eine Position zu, sondern bestimmen die Meinungen zu den jeweiligen Themen, die in den Texten enthalten sind. Diese mehrdimensionale Meinungsanalyse ist nach unserem Kenntnisstand neu im Bereich der quantitativen Analyse. Was unsere Ansätze von anderen Methoden unterscheidet, sind insbesondere folgende zwei Eigenschaften: Zum Einen nutzen wir Wissen aus externen Quellen, das wir in die Verfahren einfließen lassen - beispielsweise integrieren wir die Beschreibungen von Ministerien des Bundestags als Definition von politischen Themenbereichen, mit welchen wir automatisch Themen in Parteiprogrammen erkennen. Zum Anderen reichern wir unsere Verfahren mit linguistischem Wissen über Textkomposition und Dialogstruktur an. Somit gelingt uns eine tiefere Modellierung der Textstruktur. Anhand der folgenden drei Fragestellungen aus dem Bereich der Politikwissenschaften untersuchen wir die Umsetzung der oben beschriebenen Methoden: 1. Multi-Dimensionale Positionsanalyse von Parteiprogrammen 2. Analyse von Themen und Positionen in der US-Präsidentschaftswahl 3. Bestimmen von Dove-Hawk-Positionen in Diskussionen der amerikanischen Zentralbank Wir zeigen, dass die vorgestellten Lösungen erfolreich feingranulare Positionen in den jeweiligen Daten erkennen und analysieren Möglichkeiten sowie Grenzen dieser zukunftsweisenden Verfahren.

Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Available versions of this item

  • Fine-grained Position Analysis for Political Texts. (deposited 19 Jul 2017 07:40) [currently selected]



+ Citation Example and Export

Zirn, Cäcilia (2016) Fine-grained Position Analysis for Political Texts. Open Access Mannheim [Doctoral dissertation]
[img]
Preview


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item