Continuous approximation of Mt/Mt/1 distributions with application to production
Armbruster, Dieter
;
Göttlich, Simone
;
Knapp, Stephan
URL:
|
https://arxiv.org/abs/1807.07115
|
Dokumenttyp:
|
Arbeitspapier
|
Erscheinungsjahr:
|
2019
|
Ort der Veröffentlichung:
|
Mannheim
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Scientific Computing (Göttlich 2011-)
|
Fachgebiet:
|
510 Mathematik
|
Abstract:
|
A single queueing system with time-dependent exponentially distributed arrival processes and exponential machine processes (Kendall notation Mt/Mt/1) is analyzed. Modeling the time evolution for the discrete queue-length distribution by a continuous drift-diffusion process a Smoluchowski equation on the half space is derived approximating the forward Kolmogorov equations. The approximate model is analyzed and validated, showing excellent agreement for the probabilities of all queue lengths and for all queuing utilizations, including ones that are very small and some that are significantly larger than one. Having an excellent approximation for the probability of an empty queue generates an approximation of the expected outflow of the queueing system. Comparisons to several well-established approximation from the literature show significant improvements in several numerical examples.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Armbruster, Dieter
;
Göttlich, Simone
;
Knapp, Stephan
Google Scholar:
Armbruster, Dieter
;
Göttlich, Simone
;
Knapp, Stephan
ORCID:
Armbruster, Dieter, Göttlich, Simone ORCID: https://orcid.org/0000-0002-8512-4525 and Knapp, Stephan
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|