The Euler scheme for stochastic differential equations with discontinuous drift coefficient: A numerical study of the convergence rate
Göttlich, Simone
;
Lux, Kerstin
;
Neuenkirch, Andreas
Weitere URL:
|
https://arxiv.org/abs/1705.04562
|
Dokumenttyp:
|
Arbeitspapier
|
Erscheinungsjahr:
|
2017
|
Ort der Veröffentlichung:
|
Ithaca, NY
|
Verlag:
|
Cornell University
|
Auflage:
|
Revised 2019
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Scientific Computing (Göttlich 2011-) Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Wirtschaftsmathematik II: Stochastische Numerik (Neuenkirch 2013-)
|
Fachgebiet:
|
510 Mathematik
|
Abstract:
|
The Euler scheme is one of the standard schemes to obtain numerical approximations of stochastic differential equations (SDEs). Its convergence properties are well-known in the case of globally Lipschitz continuous coefficients. However, in many situations, relevant systems do not show a smooth behavior, which results in SDE models with discontinuous drift coefficient. In this work, we will analyze the long time properties of the Euler scheme applied to SDEs with a piecewise constant drift and a constant diffusion coefficient and carry out intensive numerical tests for its convergence properties. We will emphasize on numerical convergence rates and analyze how they depend on properties of the drift coefficient and the initial value. We will also give theoretical interpretations of some of the arising phenomena. For application purposes, we will study a rank-based stock market model describing the evolution of the capital distribution within the market and provide theoretical as well as numerical results on the long time ranking behavior.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|