Discretizing the fractional Levy area


Neuenkirch, Andreas ; Tindel, Samy ; Unterberger, Jérémie



URL: https://arxiv.org/abs/0902.0497
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 2009
Ort der Veröffentlichung: Ithaca, NY
Verlag: Cornell University
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Wirtschaftsmathematik II: Stochastische Numerik (Neuenkirch 2013-)
Fachgebiet: 510 Mathematik
Abstract: In this article, we give sharp bounds for the Euler- and trapezoidal discretization of the Levy area associated to a d-dimensional fractional Brownian motion. We show that there are three different regimes for the exact root mean-square convergence rate of the Euler scheme. For H<3/4 the exact convergence rate is n^{-2H+1/2}, where n denotes the number of the discretization subintervals, while for H=3/4 it is n^{-1} (log(n))^{1/2} and for H>3/4 the exact rate is n^{-1}. Moreover, the trapezoidal scheme has exact convergence rate n^{-2H+1/2} for H>1/2. Finally, we also derive the asymptotic error distribution of the Euler scheme. For H lesser than 3/4 one obtains a Gaussian limit, while for H>3/4 the limit distribution is of Rosenblatt type.




Dieser Datensatz wurde nicht während einer Tätigkeit an der Universität Mannheim veröffentlicht, dies ist eine Externe Publikation.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen